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• What is the federated data-science and why does fusion need this new 
paradigm?

• Data federation workflow utilizing 

− computer science, applied math and artificial intelligence tools

• Some basics of machine learning techniques

• Present status of the federated workflow research in the KSTAR-
NERSC-PPPL (HBPS-Group)-ORNL-ESNet-KREONET Consortium

• Short-term plans

• Discussions

Outline
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A tokamak reactor is packed with thousands of sensors to 
be federated together with many users and many computers

KSTAR
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Fusion data from experiment and simulation possess 
all the big V properties 
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• ~1PB/day
• Subsequent 

simulations can 
greatly enhance 
data volume

• 50GB/s for up to 
1000s, each shot

• Hierarchy of 
analysis for near-
real-time 
feedback 

• Wide variety 
data from 
thousands of 
sensors

• Many-scale 
many-physics

• All the data have 
different quality: 
e.g., validity range, 
error, and noise

• All the 
expensive 
sensors are 
there because 
they produce 
valuable data

AI/DL in high 
demand
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Why an end-to-end federated framework?
• Fusion plasma dynamics is multi-scale, multi-physics phenomena.

− Nonlinear interactions (self-organization) determines physics outcome
− Physics should be determined jointly from many instruments or scales
− Each instrument has its own quality, error, and uncertainty (veracity),
− Error from each instrument propagates to error in other physics estimates

• Different instruments are managed by different scientists 
à human integration à not efficient

• Future fusion devices may be in different physics regime
• Experts and computing capabilities are scattered all over the world

− Experimental steering takes too long for fast scientific progress
− Combining-in the more complete physics (from 1st principles 

simulations) will be difficult.
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Utilize computer science, applied math and AI tools.
Simplify analysis setup: end-to-end abstraction for parallelization and libraries



System structure in the federated fusion research

Fusion Reactor with thousands 
of sensors

HPC

FEDERATED RESEARCH
ORCHESTRATION SYSTEM

Physics, Math, CS, AI

Reduced 
Big Data

many 
international 

users on 
different level 

resources

Users are to 
be placed at 

different level 
in the data 
pyramid

A preliminary workflow was 
created in the ICEE project by 
ANL-ORNL-PPPL-KSTAR-ESnet.  

(In future DEMO reactors in 
“nuclear” environment, sensors 
can be limited, and HPCs will 
become a more important part of 
the federated research.)

Smart reduc7on

Monitoring

DiscriminaGon
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System structure in the federated fusion research
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Physics workflow in the federated fusion research

Pre & post computing at large scale
• Guide “next-day” experiments
• Understand fundamental physics
• Simulation data too big for filesystem
• Many collaborators à Federated
• In-memory on-the-fly analysis/vis, & 

reduction: train AI tools

Experiments: high cost
• Fusion data is big: ITER~400PB/yr
• Thousands of sensors: PB per day
- Data analized & reduced near instruments
- Physics too complicated for onsite study
- Near-realtime federated data flow needed
- “Streaming” data-science with AI
Experiment à analysis/understanding à
steer present/next experiment

Goal: Accelerated & cheaper 
realization of commercial reactors

Small-scale, reduced model, 
empirical computing

• For the quick empirical analysis and 
experimental support

HPCs,
Distributed,
Clusters

understand

analy
ze
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Streaming analysis 
& reduc5on, near 

instruments

Near real-5me 
steering & 
scheduling

1st phase 
Scientific 
discovery

Smart-reduced data 
can be stored

(start of slow lane)

1,000s post-
analyses

Collaborative, 
~100 remote 
analyses and 
automation 
(limited to 
resource 

availability)

2nd phase 
Scien5fic 
discovery

Slow and Fast Data lanes in federated fusion research

HPC,
Cloud...

Streaming data reduc5oninputbackground

compu5ng

Fast Lane
Slow

 Lane

Local or 
distributed 
resources

Some data segregated 

reserva5on
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• NERSC has strong ML 
support programs for 
DOE Offices.

• Several other areas are 
already in the NERSC 
program.

• The KSTAR-PPPL 
initiative will get fusion 
into the NERSC ML 
program
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m = (m1, m2, … mK): mean 
distance vector

If R [= ||m(t) - m(t-1)||] < ζ
Then, use m(t) as solution

Some basics of ML techniques 
K-Means Clustering

(movie by R. Churchill, PPPL)
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Example for the slow lane usage: K-Means Clustering 
reveals interesting v-space structure of electron dynamics 

in blobby edge turbulence 
(R. Churchill, PPPL, )

§ K=5
§ At a higher energy band relative to 

local Te, trapped particle’s response 
to blobs is mutually correlated and 
decorrelated from passing particles

• A sign of TEM driven turbulence

Apache Spark is used here to generate 
the example physics shown here.

14



U"lized clustering methods, D. Smith (U. Wisconsin, PPPL)
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Deep convolu+onal neural networks for long-
+me series analysis (Churchill, PPPL)

• Fusion plasmas exhibit a range of timescales 
and physics

• Fusion experimental diagnostics are 
disparate, and highly time resolved

• PPPL is developing deep convolutional neural 
networks to automatically analyze and identify 
physics of interest  

• This will allow end-to-end training on raw data 
from multiple sources, in an efficient manner

Sigmoid func5on 16
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Example for the fast lane usage using neural network,
for near real-7me NUBEAM simula7on in TRANSP

Dan Boyer (PPPL)
• Predictive TRANSP simulations can take hours per simulation second
• NUBEAM is a Monte Carlo code that calculates the effect of neutral beams on the 

plasma (heating, current drive, torque)
• Often takes >70% of TRANSP calculation time for high quality NUBEAM

• Basic machine learning approaches enable the development of NubeamNet

Calcula2on of beam 
effects (at 5ms 
intervals) took less 
than 50ms for the 
en7re shot, 
compared to hours 
for high quality 
NUBEAM



Mathematical Tools for Lossy & Faithful Data Reduction
Mark Ainsworth Brown U. & ORNL

Magnetic island detection

S: Smoothness parameter
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The same data reduc-on technique can be applied to ELM and turblent blobs

Mark Ainsworth
Brown U. &
ORNL

S: Smoothness parameter
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Where are we in the process?
● Remote streaming, with data reduction, implemented in 

data I/O framework ADIOS [1]
● KSTAR - PPPL streaming demo on 8/2017 of near real-

time processing of ECEi data, with comparison to XGC 
simulation

● Demo used special one-time PPPL network configuration (a la science DMZ), 
which gave ~7Gbps > ITER-Japan test speed
○ Normal PPPL firewall setup gives ~0.2Gbps
○ Ongoing discussion if dedicated science

DMZ can be established at PPPL
● Initial KSTAR-NERSC test performed in 10/2018

[1] Choi IEEE Tran. NYSDS 2016
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Adios Data Streams Over Wide-Area-Network 
(WAN)

Research on stream-based WAN data process
– In-transit processing (suppor/ng data-in-memory)
– Data indexing & reduc/on to reduce network payload
– Plug-in methods: SST (EVPath-based), DataMan (ZMQ-based 

control)

Data 
Hub

Analysis

Analysis

Analysis

Memory-to-memory data delivery
Transparent workflow execu/on

WAN Transportation
• SST
• DataMan
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Adios between NERSC-KSTAR
KSTAR

NERSC, USA

• Measured in September 2018
• Between KSTAR and NERSC
• Run a simula@on code with writers and readers
• 8 writers at KSTAR side
• 2-16 readers on a NERSC DTN node

ADIOS Data Writer

Analysis ADIOS

Analysis ADIOS

ADIOS Data Writer

Parallel 
Data 
Streams

22



Software Infrastructure to Enable the Workflow
Site A Site B

Data Generator

ADIOS 2.0
Write API

DataMan
Engine

DataManager
Engine Library

ZfpMan MdtmMan

ZmqMan

EvPathMan

DataManager
Library

MdtmMan

ZfpMan

Callback

Data Analyzer / 
Visualizer

ADIOS 2.0
Read API

DataMan
Engine

ZmqMan

EvPathMan

Real-time feedback controlling data streaming 
strategies, compression strategies, etc.
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Short-Term Plans (to be discussed with KSTAR researchers) 
Low hanging fruits

● Off-line data reduction and ML-model training on KSTAR-ECEI data for ELM 
physics, based on the existing post-processing routines (POSTECH, UNIST)
− ELM precursor/onset, interaction with turbulence and RMPs

● On-line near real-time data reduction & ML analysis of the KSTAR ECEI ELM
− Quick feed back to next-day experiments

Extension
● Initiate simulation and provide real-time physics results on federated dashboard

Further extension
● Federated decision using ML on the experimentally observed plasma profiles, 

with EFIT reconstruction on multiple time slices (highly parallel): Sabbagh
● Near real-time analysis of NTM onset and growth à feedback to experiment

− Accelerated research on NTM control
● Real-time observation/control of disruption precursor events: Sabbagh
● Near real-time analysis of the divertor heat-load footprint à feedback

− Accelerated research on divertor heat-load width control
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